SA367 - Mathematical Models for Decision Making Spring 2020 - Uhan

Lesson 13. Introduction to Stochastic Dynamic Programming

1 Motivation
e In the dynamic programs we have studied so far, the transitions from one state to the next are deterministic
o For example, the knapsack problem:
o Suppose we are in stage ¢ and state n (deciding whether to take metal ¢ with n kg of space remaining)

o Ifwe decide to take metal ¢ in stage ¢, we know exactly what state we will be in stage f+1:

e What if the transitions between states are subject to some randomness or stochasticity?

2  Anexample

The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner, over the next 2
months. Based on some market analysis studies, the company has determined that the demand for the new beer in
each month will be:

Demand (batches) Probability

0 1/4
2 3/4

Each batch of beer costs $3,000 to produce. Batches can be held in inventory at a cost of $1,000 per batch per month.
Each month, the company can produce either 0 or 1 batches, due to capacity limitations. In addition, the size of the
company’s warehouse restricts the ending inventory for each month to at most 2 batches. The company has 1 batch
ready to go in inventory.

Due to contractual obligations, there is a penalty of $5,000 for each batch of demand not met. Any batches produced
that cannot be stored in the company’s warehouse gets thrown away, and cannot be used to meet future demand.

The company wants to find a production plan that will minimizes its total production and holding costs over the next 3
months.



e Let’s think about the decision-making process starting at month 1
o Let:

o Node ¢, represent month ¢ with n batches in inventory
o x; represent the number of batches to produce in month ¢

o d; represent the number of batches in demand in month ¢

e We can draw the following diagram (that looks like a graph) that models the decision-making process

e We can diagram the entire 2-month process in a similar fashion:






e Consider the following production policy:

o In month 1, produce 1 batch
o In month 2:

o If there are 2 batches in inventory, produce 0 batches
o If there are 0 batches in inventory, produce 1 batch

e What is the expected cost of this policy?
e Working backwards:

o Expected cost in month 2 with 2 batches in inventory (node 2,):

o Expected cost in month 2 with 0 batches in inventory (node 2):

o Expected cost in month 1 (node 1;):

Things to think about

o The policy above gives contingency plans

e The diagram we drew on page 3 sort of looks like a shortest path problem, but it’s not!
e We cannot solve this example as a shortest path problem, since the edges “are random”

We can, however, still write a recursion to represent this example problem, and others like it

Well explore this next...



Writing down the model

e What we really want: a production policy with minimum expected cost

Let’s write down the recursive representation of our model/diagram

We can then solve this recursion by working backwards and determine the minimum expected cost and associated
optimal policy

Stages:

States:

Transition probability p(m | n, t, x;) of moving from state n to state m in stage ¢ under decision x;:

e Contribution c¢(m|n, t, x;) of moving from state # to state m in stage ¢ under decision x;:

o Allowable decisions x; at stage ¢ and state n:



e In words, the value-to-go f;(n) at stage t and state # is:

e Boundary conditions:

e Value-to-go recursion:

e Desired value-to-go function value:



5 Interpreting the value-to-go function
e We can solve this recursion just like with a deterministic DP: start at the boundary conditions and work backwards

e For this problem, we get the following value-to-go function values f;(n) for t = 1,2 and n = 0, 1, 2, as well as the
decision x; that attained each value:

t n fi(n) x;
1 0 13125 1
1 1 8.875 1
1 2 5875 0
2 0 7 1
2 1 35 1
2 2 0.5 0

e Based on this, what should the company’s policy be?

e What is the company’s total expected cost?



6 Stochastic dynamic programs, more generally
Stochastic dynamic program
e Stagest=1,2,...,Tand statesn =0,1,2,...,N
o Allowable decisions x; at each stage ¢t and state n
e Transition probability p(m |n, t, x;) of moving from state n to state m in stage ¢ under decision x;

e Contribution c¢(m|n, t, x;) for moving from state » to state m in stage t under decision x;
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Value-to-go function f;(n) at each stage t and state n

Boundary conditions on fr(n) for each state n

Recursion on f;(n) at stage ¢ and state n

N
fi(n) = min or max{ > p(m|n,t, xt)[c(m |n,t,x;) +ft+1(m)]}

x; allowable m=0

fort=1,2,...,T-1landn=0,1,...,N

Desired value-to-go, usually f,(m) for some state m
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